Тепловая энергия, потребление, использование теплоэнергии

​тепловая энергия

Как действуют геотермальные установки

В получении электроэнергии при помощи подземного тепла используются три наиболее распространенных варианта.

  1. Прямая схема, где работает пар в сухом виде;
  2. Непрямая, в которой задействованы свойства водяного пара;
  3. Бинарная (смешанная).

Конкретный вариант зависит от того, в каком состоянии находится геотермальная среда – водяном или паровом. Учитываются и температурные показатели. В своем первоначальном виде электростанции работали по первой схеме, когда добытый пар подается напрямую внутрь турбины. Однако, чаще всего стал использоваться второй вариант непрямого действия, когда закачка жидкости производится под повышенным давлением в резервуары генераторных агрегатов, установленных на поверхности. В данной схеме отсутствует непосредственный контакт пара, воды и турбин с генераторами. Каждый способ следует рассмотреть подробнее.

Многие установки пользуются в своей работе гидротермальным сухим паром (рис. 1). Его движение осуществляется напрямую внутрь турбины, соединенной с электрическим генератором. Горячий пар используется вместо обычных видов твердого и жидкого топлива, поэтому данная технология используется до сих пор, хотя она и несколько устарела.

Более прогрессивным считается вариант на парогидротермах (рис. 2) с непрямым действием. Нагрев гидротермального раствора производится до температуры от 182 градусов и выше. Он нагнетается в специальный испаритель и под образовавшимся давлением выполняется его быстрое выпаривание. Под влиянием образовавшегося пара турбинный вал приводится в действие. Жидкость, оставшаяся в емкости, может быть выпарена в другом испарительном устройстве, что дает возможность повысить мощность установки.

В большинстве районов с горячими источниками тепла температура воды довольно умеренная и не превышает 200С, а зачастую она значительно ниже. Такая вода применяется в оборудовании с бинарным циклом и оказывается вполне пригодной для выработки электроэнергии. В данной ситуации принцип работы геотермальной электростанции следующий: помимо воды в системе применяется еще одна, специальная жидкость, с более низкой точкой кипения. Они обе проходят внутри теплообменника, где нагретая подземная вода превращает в пар другую жидкость. Полученный за счет этого пар, попадает в турбину и начинает вращать лопатки.

Данная система функционирует полностью в замкнутом цикле, поэтому каких-либо ядовитых выбросов в окружающую среду практически нет. Так как вода с умеренной температурой обычно встречается в горячих источниках, то в перспективе большинство электроустановок будет переведено на этот рабочий режим.

В дальнейшем планируется использовать и другие геотермальные ресурсы. Горячая вода и пар составляют лишь незначительную часть от общих резервов. Практически неиссякаемые энергетические источники будут обеспечены за счет сухих твердых пород и магмы. В данное время ведутся практические разработки, нацеленные на снижение стоимости получения геотермального электричества.

Своими руками: что и как

Если уж и монтировать геотермальное отопление своими руками, то внешний контур лучше все-таки купить в готовом виде. Конечно, мы рассматриваем лишь способы горизонтального расположения внешнего теплообменника: под поверхностью почвы или под водой.

Скважинный вертикальный коллектор смонтировать самостоятельно гораздо сложнее, если вы не обладаете оборудованием и навыками бурения.

Тепловой насос – не слишком габаритное оборудование. В вашем доме он не займет много места. Ведь по размеру он сопоставим, например, с обычным твердотопливным котлом. Подключить к нему внутренний контур вашего дома – задача несложная.

Вообще-то делается всё точно так же, как и при организации и разводке отопления с использованием традиционных источников тепла. Главная трудность – устройство внешнего контура.

​тепловая энергия
Такое расположение дома относительно пруда встречается чаще. Главное, чтобы водоём был не дальше, чем в 100 метрах от коттеджа

Лучшим вариантом будет использование водоёма, если такой найдется на расстоянии не более 100 м. Необходимо, чтобы его площадь превышала 200 кв. м, а глубина – 3 м (средний параметр промерзания). Если этот водоём вам не принадлежит, то проблемой может стать получение разрешения на его использование.

Если же водоём – это пруд, который находится у вас в собственности, то дело упрощается. Воду из пруда можно временно откачать. Тогда работы на его дне можно будет выполнять легко: нужно будет уложить трубы по спирали, закрепив их в этом положении.

Земляные работы понадобятся только для рытья траншеи, которая нужна будет для присоединения внешнего контура к тепловому насосу.

После выполнения всех работ, пруд может быть снова заполнен водой. В ближайшие лет сто внешний теплообменник должен работать исправно и не доставлять хлопот его владельцу.

Если в вашем распоряжении оказался земельный участок, на котором вам только предстоит возводить жильё и растить сад, имеет смысл распланировать горизонтальный теплообменник грунтового типа.

Для этого следует сделать предварительный расчет площади будущего коллектора, исходя из параметров, которые уже указаны выше: 250-300 кв. м коллектора на 100 кв. м отапливаемой площади дома.

​тепловая энергия
Если вам достался участок без строений и растительности, которую бы хотелось сохранить, грунт при сооружении внешнего горизонтального почвенного контура можно просто снять: это легче, чем выкапывать траншеи

Траншеи, в которые предстоит укладывать трубы контура, нужно выкапывать ниже уровня промерзания почвы.

А ещё лучше – просто снять грунт на глубину его промерзания, уложить трубы, а после вернуть грунт на место. Работа трудоёмкая, сложная, но, имея большое желание и целеустремленность, вы сможете её выполнить.

Устройство геотермальной отопительной системы

Геотермия (наука о тепловом состоянии Земли) сделала возможным практическое применение тепловой энергии, которую земная кора получает от раскаленной магмы в центре планеты.

Специально разработанный тепловой насос для отопления дома устанавливается на поверхности, а в грунте или на дне водоема монтируется теплообменник. Тепловая энергия «выкачивается» на поверхность и позволяет нагреть теплоноситель в контуре отопления дома или объекта нежилого назначения.

​тепловая энергияКак происходит процесс обогрева

Геотермальное отопление частного дома — экономически эффективный вариант. Если использовать энергию земли для отопления дома, то на каждый киловатт электроэнергии, необходимой для работы оборудования, приходится от 4 до 6 кВт полезной тепловой энергии, полученной из недр планеты.

В сравнении с функционированием кондиционера увидим, что при его эксплуатации на получение 1 кВт тепловой энергии требуется затратить более 1кВт электроэнергии. Это связано с неизбежными потерями на преобразование одной энергии в другую и т.д.

Отапливать жилой дом за счёт тепловой энергии земных недр очень выгодно, но период окупаемости оборудования и затрат на монтаж займет определенное время.

Использование тепла земли для отопления дома не требует установки традиционного котла для нагрева теплоносителя.

В данном случае система состоит из трех составляющих:

  • контур нагревания — геотермальный источник тепловой энергии;
  • отопительный контур внутри дома — низкотемпературный радиаторный либо напольный;
  • насосная станция — тепловой насос для перекачивания в отопительный контур тепловой энергии из контура нагревания в толще грунта или под водой.

Геотермальная система отопления может применяться также для обогрева теплиц, вспомогательных построек, воды в бассейне, садовых дорожек и т.д.

Особенности

Геотермальное отопление дома, загородного в первую очередь, не расходует дорогостоящее и загрязняющее воздух минеральное топливо. Вот уже 7 из 10 новых домов, возводимых в Швеции, отапливаются именно таким образом. В жаркие дни геотермальное оборудование из нагревателя становится средством пассивного кондиционирования. Вопреки распространенному мнению, для работы такой отопительной системы не нужны ни вулканы, ни гейзеры. В самой обычной равнинной местности она действует ничуть не хуже.

Единственным условием оказывается достижение тепловым контуром точки ниже линии промерзания, где температура почвы всегда составляет от 3 до 15 градусов. Сверхвысокий КПД только кажется противоречащим законам природы; тепловой насос насыщен фреоном, который испаряется под действием даже кажущейся людям «ледяной» воды. Пар согревает третий контур. Такая схема представляет собой вывернутый наизнанку холодильник. Потому эффективность насоса относится только к количественному соотношению электрической энергии и тепловых ресурсов. Сама по себе работа привода производится «как полагается», с неотвратимыми потерями энергии.

​тепловая энергия​тепловая энергия

От подземного тепла до электричества

Для добычи геотермальной энергии задействуется естественное тепло, производимое в глубине земных недр. Подобраться к таким источникам на нужное расстояние возможно по специальным шахтам или скважинам. По мере бурения наблюдается возрастание геотермического градиента на 1С при прохождении точного расстояния в 36 метров. Тепло, извлеченное наверх, представляет собой воду, нагретую почти до кипения или пар.

Полученная этим способом тепловая энергия применяется напрямую в отоплении зданий или при помощи специального оборудования превращается в электроэнергию. Районы, пригодные для получения термальной энергии, есть во многих местах земного шара.

Проведенные исследования показали, что в центральной точке планеты температура ядра составляет примерно 6650С и выше. Постепенно происходит остывание в среднем темпе в 300-350С каждый миллиард лет. В мантии и ядре содержится примерно 98% тепловой энергии, и лишь 2% приходится на слой земной коры. Однако даже эта незначительная доля способна обеспечивать потребности людей в течение длительного времени. Идеальными местами под геотермальные станции считаются места в районе стыков между континентальными плитами, поскольку толщина коры здесь значительно меньше.

Известно, что с повышением глубины скважины пропорционально возрастает и температура. Однако, существует немало мест, где она поднимается значительно быстрее. Это участки с высокой сейсмической активностью, проявляющейся при столкновениях или разрывах тектонических плит. Именно здесь намного проще добывать тепловые ресурсы, отличающиеся повышенным геотермическим градиентом. Такая энергия получается более дешевой из-за сокращения затрат на бурильные и насосные работы.

Иногда вода выходит прямо на поверхность, сразу оказывается нагретой до требуемых параметров, как это случается с гейзерами. Именно в этих точках прежде всего возводятся электроустановки, функционирующие на бесплатной тепловой энергии.

Принцип работы теплового насоса

Конструкция теплового насоса

«Сердцем» геотермального отопления является тепловой насос. Он состоит из нескольких компонентов, работа которых напрямую влияет на показатель КПД всей системы. Поэтому прежде чем планировать отопление частного дома от земли – нужно выяснить основные характеристики этого узла.

Так как это устройство относится к разряду сложного оборудования – рекомендуется приобретать только заводские модели. Конструкция теплового насоса включает в себя следующие компоненты:

  • Испаритель. В этом блоке происходит передача энергии от внешнего контура;
  • Компрессор. Необходим для создания высокого давления в среде хладагента;
  • Капилляр. Он служит для уменьшения внутреннего давления в контуре хладагента;
  • Система управления. С ее помощью регулируется отопление частного дома от земли – температурный режим работы, скорость прохождения теплоносителей и т.д.

Основной проблемой при самостоятельном изготовлении теплового насоса является уменьшение тепловых потерь и нормализация работы внутреннего контура с хладагентом. Настройка заводских моделей происходит еще на стадии изготовления, а в конструкции предусмотрены возможности регулировки ее параметров.

Как правильно рассчитать параметры насоса, чтобы тепло земли для отопления дома обеспечило нормальную температуру? Для этого нужно узнать тепловую мощность насоса. Для приблизительного вычисления можно воспользоваться следующей формулой:

Q=(t1-t2)*V

Где t1-t2 – разница температуры на входной и обратной трубе, °С, V – расчетный объем расхода теплоносителя, м³/ч, Q – номинальная мощность теплового насоса, Вт.

Эта методика неприменима для сложных систем, так как в них присутствует множество дополнительных факторов. В частности – тепловые потери на магистрали. В особенности это касается тех зон, где она выходит максимально близко к поверхности грунта. Для минимизации тепловых потерь следует выполнить утепление труб отопления в земле.

Варианты обустройства геотермального отопления

​тепловая энергияСпособы обустройства внешнего контура

Для того, чтобы энергия земли для отопления дома была использована максимально – нужно правильно выбрать схему внешнего контура. По сути, источником тепловой энергии может быть любая среда – подземная, водяная или воздушная

Но при этом важно учитывать сезонные изменения погодных условий, о чем говорилось выше

В настоящее время распространены два вида систем, которые эффективно используются для отопления дома за счет тепла земли – горизонтальная и вертикальная. Ключевым фактором выбора является площадь земельного участка. От этого зависит схема расположения труб для отопления дома энергией земли.

Кроме него учитываются такие факторы:

  • Состав грунта. В скалистых и суглинке сложно делать вертикальные стволы для прокладки магистралей;
  • Уровень промерзания почвы. Он определит оптимальную глубину залегания труб;
  • Расположение подземных вод. Чем они выше – тем лучше для геотермального отопления. В таком случае температура с изменением глубины будет повышаться, что является оптимальным условием для отопления за счет энергии земли.

Также нужно знать и о возможности обратной передачи энергии в летний период. Тогда отопление частного дома от земли не будет функционировать, а избыток тепла будет переходить от дома в почву. По такому же принципу работают все холодильные системы. Но для этого необходимо установить дополнительное оборудование.

Горизонтальная схема геотермального отопления

​тепловая энергияГоризонтальное расположение наружных труб

Самый распространенный способ установки наружных магистралей. Он удобен простотой монтажа и возможностью относительно быстрой замены неисправных участков трубопровода.

Для установки по этой схеме используется коллекторная система. Для этого делается несколько контуров, расположенных на минимальном удалении в 0,3 м друг от друга. Они соединяются с помощью коллектора, который подает теплоноситель далее в тепловой насос. Это обеспечит максимальное поступление энергии в отопление от тепла земли.

Но при этом нужно учитывать ряд важных нюансов:

  • Большая площадь приусадебного участка. Для дома около 150 м² она должна быть не менее 300 м²;
  • Трубы в обязательном порядке уславливаются на глубину ниже уровня промерзания почвы;
  • При возможном движении почвы во время весенних паводков увеличивается вероятность смещения магистралей.

Определяющим преимуществом отопления от тепла земли горизонтального типа является возможность самостоятельного обустройства. В большинстве случаев для этого не понадобится привлечение спецтехники.

Вертикальная схема геотермального отопления

​тепловая энергияВертикальная геотермальная система

Это более трудоемкий способ организации отопления частного дома от земли. Трубопроводы располагаются вертикально, в специальных скважинах

Важно знать, что подобная схема намного эффективнее, чем вертикальная

Ее основное преимущество заключается в увеличении степени нагрева воды во внешнем контуре. Т.е. чем глубже расположены трубы – тем больше количество тепла земли для отопления дома поступит в систему. Еще одним фактором является небольшая площадь земельного участка. В некоторых случаях выполняется обустройство наружного контура геотермального отопления еще до строительства дома в непосредственной близости от фундамента.

С какими трудностями можно столкнуться при получении энергии земли для отопления дома по этой схеме?

  • Количественное в качественное. Для вертикального расположения длина магистралей значительно выше. Она компенсируется большей температурой почвы. Для этого нужно делать скважины глубиной до 50 м., что является трудоемкой работой;
  • Состав почвы. Для скального грунта необходимо применить специальные буровые машины. В суглинке для предотвращения осыпания скважины монтируют защитную оболочку из ж/б или толстостенного пластика;
  • При возникновении неполадок или потере герметичности усложняется процесс ремонта. В этом случае возможны долговременные сбои в работе отопление дома за тепловой энергии земли.

Но невзирая на большие первичные затраты и трудоемкость монтажа, вертикальное расположение магистралей является оптимальным. Специалисты советуют применять именно такую схему установки.

Методы сбора энергетических ресурсов Земли

Сегодня есть три основных метода сбора геотермальной энергии: сухой пар, горячая вода и бинарный цикл. Процесс с сухим паром прямо вращает привода турбин генераторов электроэнергии. Горячая вода поступает снизу вверх, затем распыляется в бак, чтобы создать пар для привода турбин. Эти два метода являются наиболее распространенными, генерируя сотни мегаватт электроэнергии в США, Исландии, Европе, России и других странах. Но расположение ограничено, так как эти заводы работают только в тектонических регионах, где легче получить доступ к подогретой воде.

При технологии бинарного цикла извлекается на поверхность теплая (не обязательно горячая) вода и объединяют её с бутаном или пентаном, который имеет низкую температуру кипения. Эта жидкость перекачивается через теплообменник, где  испаряется и направляется через турбину перед рециркуляцией обратно в систему. Технологии бинарного цикла дает  десятки мегаватт электроэнергии в США: Калифорнии, Неваде и на Гавайских островах.

​тепловая энергия

Принцип получения энергии

Недостатки получения геотермальной энергии

На уровне полезности, геотермальные электростанции являются дорогостоящими, чтобы построить и работать. Для поиска подходящего места требуется дорогостоящее обследование скважин без гарантии попадания в продуктивную подземную горячую точку. Тем не менее, аналитики ожидают увеличения этой мощности почти вдвое в течение следующих шести лет.

Кроме того районы с высокой температурой подземного источника находятся в районах с активными геологохимическими вулканами. Эти «горячие точки» образовались на границах тектонических плит в местах, где кора достаточно тонкая. Тихоокеанский регион, часто называют как кольцо огня для многих вулканов, где  есть много горячих точек, в том числе на Аляске, Калифорнии и Орегоне. Невада имеет сотни горячих точек, охватывающих большую часть северной части США.

Есть и другие  сейсмически активные районы. Землетрясения и движение магмы позволяют воде циркулировать. В некоторых местах вода  поднимается к поверхности и  природные горячие источники и гейзеры происходят, такие, как на Камчатке. Вода в гейзерах Камчатки достигает  95° C.​тепловая энергия

Одна из проблем открытой системы гейзеров является выделение некоторых загрязнителей воздуха. Сульфид водорода — токсичный газ с очень узнаваемым запахом «тухлого яйца» — небольшое количество мышьяка и минералов, выпущенных с паром. Соль также может представлять экологическую проблему.

На геотермальных электростанциях расположенных в море значительное количество мешающей соли накапливается в трубах. В замкнутых системах нет выбросов и возвращается вся жидкость доведенная до поверхности.

Экономический потенциал энергоресурса

Сейсмически активные точки не являются единственными местами, где можно найти геотермальную энергию. Существует постоянный запас полезного тепла для целей прямого нагрева  на глубине везде от 4 метров до нескольких километров ниже поверхности практически в любом месте на земле. Даже земля на собственном заднем дворе или в местной школе имеет экономический потенциал в виде тепла, чтобы выдавать  в дом или другие здания.

Кроме того существует огромное количество тепловой энергии в сухих скальных образованиях очень глубоко под поверхностью (4 – 10 км).

Использование новой технологии может  расширить геотермальные системы, где люди смогут использовать это тепло для производства электроэнергии в гораздо большем масштабе, чем обычные технологии. Первые демонстрационные проекты этого принципа  получения  электричества показаны  в Соединенных Штатах и Австралии еще в 2013 году.

Если полный экономический потенциал геотермальных ресурсов может  быть реализован, то это будет представлять огромный источник электроэнергии для  производственных мощностей. Ученые предполагают, что обычные геотермальные источники имеют потенциал 38 000 МВт, который может производить 380 млн МВт электроэнергии в год.

Горячие сухие породы залегают на глубинах от 5 до 8 км везде под землей и на меньшей глубине в определенных местах. Доступ к этим ресурсам предполагает введение холодной воды, циркулирующей через горячие скальные породы и отвода нагретой воды. В настоящее время нет коммерческого применения этой технологии. Существующие технологии пока не позволяют восстанавливать тепловую энергию непосредственно из магмы, очень глубоко, но это самый мощный ресурс геотермальной энергии.

С комбинацией энергоресурсов и ее последовательности, геотермальная энергия может играть незаменимую роль как более чистая, более устойчивая энергетическая система.

Геотермальные тепловые насосы имеют ряд достоинств

Неоспоримые преимущества такого рода насосов обусловили их актуальность для разных регионов. Главными достоинствами оборудования считаются:

  • Максимальная стабильность характеристик (КПД, тепловая мощность), которые не зависят от воздействия внешней среды (погодных условий, времени года). Это обусловлено тем, что температура грунта в скважинах не меняется – она постоянна;
  • Высокие показатели КПД (400-500%), обеспечивающие высокую эффективность. На 1 кВт электрической энергии приходится 3-5 кВт мощности тепловой энергии;
  • Щадящее отношение к окружающей среде и ландшафту при монтаже оборудования;
  • Возможность компактного размещения. Скважины не требуют большой площади участка, нарушения целостности фасада и интерьера, у них не имеется наружных блоков;
  • Большой эксплуатационный срок, долговечность. Заводские грунтовые зонды имеют срок эксплуатации порядка 100 лет. Компрессор, основной узел теплового насоса, который легко меняется, проработает 30 лет;
  • Простота использования. Не требует повышенного внимания к себе;
  • Универсальность применения оборудования – насос позволяет, и охлаждать, и нагревать необходимую площадь;
  • Обеспечение максимального уровня комфорта в доме (низкотемпературное отопление – теплый пол), отсутствие шума;
  • Минимум колебаний влажности и температуры;
  • Освобождается территория, требующаяся для размещения узлов системы отопления;
  • Двойной зонд в виде буквы «U» обеспечивает дублирование зондов в скважине, увеличенный съем тепловой энергии, малое гидравлическое сопротивление. Зонд будет надежно защищен от повреждений после того, как скважину заливают термо раствором;
  • Экологическая чистота данных методов кондиционирования или обогрева. Нет выброса в атмосферу углекислого газа, вредных продуктов горения;
  • Абсолютная пожаро- и взрывобезопасность. Для эксплуатации не требуется специальное оборудование;
  • Использование небольшого количества электроэнергии, что дает низкие эксплуатационные затраты. К примеру, геотермальный тепловой насос (17 кВт) подходит для отопления жилого дома в 350 кв. м – потребление электричества составит до 5 кВт в час.
  • Максимальная автономность и независимость, нет необходимости в газопроводе. Не возникает зависимости от поставок и цен на жидкое топливо или газ – насос работает от электричества.
  • При использовании таких насосов не придется в срочном порядке освобождать лишнюю территорию для того чтобы поместить дымоход, котельную, специальное хранилище для топлива.
Adblock
detector