- Резервная защита присоединения
- Логический элемент «НЕ»
- Ступени релейной защиты (РЗ)
- 1.6. Источники оперативного тока
- Классификация
- ОСНОВНЫЕ ВИДЫ УСТРОЙСТВ РЕЛЕЙНОЙ ЗАЩИТЫ И АВТОМАТИКИ
- Принципы проектирования
- Виды
- Еще виды РЗА
- Назначение релейной защиты
- 3-1. Токовая отсечка и максимальная токовая защита одиночных линий 35 и 110 кВ
- Надежность ЛЗШ
- 1.1 Назначение релейной защиты и автоматики
- Из чего состоит ЛЗШ
Резервная защита присоединения
Опять же давайте сначала посмотрим определение (ПЭУ п.3.2.15) – “Для действия при отказах защит или выключателей смежных элементов следует предусматривать резервную защиту, предназначенную для обеспечения дальнего резервного действия.
Если основная защита элемента обладает абсолютной селективностью (например, высокочастотная защита, продольная и поперечная дифференциальные защиты), то на данном элементе должна быть установлена резервная защита, выполняющая функции не только дальнего, но и ближнего резервирования, т. е. действующая при отказе основной защиты данного элемента или выведении ее из работы…”
Таким образом резервная защита присутствует также всегда и для любого присоединения (см. Миф 3).
Просто запомните одну простую вещь – на любом участке энергосистемы, на любом классе напряжения, есть как минимум 2 защиты – основная и резервная. Всегда!
Чаще всего резервной защитой присоединения является основная защита вышестоящего присоединения. Получается последовательная цепочка защит в которой все ступени “наползают” друг на друга.
Однако, если основная защита присоединения выполняется в виде дифференциальной или дифференциально-фазной защиты, то нужна еще одна защита, чтобы выполнить резервирование нижестоящего участка. Эта защита должна быть ступенчатой потому, что только ступенчатые могут выполнять дальнее резервирование. Об этом мы говорили в нашей прошлой статье.
Итак, давайте подведем итоги:
- На любом присоединении есть как минимум одна основная защита
- На любом присоединении есть как минимум одна резервная защита
- Основной может быть защита, выполненная на любом принципе (МТЗ, ДЗ ДЗТ, ДФЗ и т.д.)
- Резервной может быть только ступенчатая защита (МТЗ или ДЗ)
- На присоединении может быть несколько основных и резервных защит
Думаю, теперь у вас не будет затруднений с определением какой именно, основной или резервной, является та или иная защита
Четкость и понятность определений в релейной защите очень важна и мы будем периодически уделять внимание основным терминам
Логический элемент «НЕ»
Логическое «НЕ», или «инверсия», представляет собой элемент, который изменяет входной сигнал на противоположное состояние. Если на входе присутствует логическая «1», то на выходе будет логический «0», и наоборот, если на входе «0», то на выходе будет «1». На рис. 3 приведена схема реализации обработки сигналов с помощью реле KL, а также логический элемент «НЕ», который логически повторяет схему.
Очень часто логический элемент «НЕ» не обозначается на схемах как отдельный самостоятельный элемент, а указывается его сокращенное обозначение. На рис. 4 приведен пример логической схемы с элементом «И» и элементом «НЕ» на входе KL2.
Элемент «НЕ» обозначен как круг на входе KL2. Такое обозначение может встречаться на различных элементах, причем как на входе сигнала, так и на выходе. Такое сокращенное обозначение элемента «НЕ» очень часто применяется в логических схемах. Если вы только начинаете учиться читать такие схемы, рекомендую дорисовывать на входе элемент «НЕ» (как показано на рис. 5), так будет проще анализировать элемент «И» и элемент «НЕ».
Логические элементы «И», «ИЛИ», «НЕ» являются основными «рабочими лошадками» схем, и поэтому их надо хорошо понимать и правильно называть.
Элементы «И» и «ИЛИ» обычно называют, указывая количество входных сигналов: если элемент «ИЛИ» имеет 2 входа, то «2-ИЛИ» (произносится «два или»), если элемент «И» имеет 4 входа, то «4И» (произносится «четыре и»).
Если же на входах или выходах элемента «И» и «ИЛИ» выполнена инверсия (рис. 4), то обозначение инверсии присоединяют к имени элемента в начале для входа и в конце — для выхода. Т.е. элемент, показанный на рис. 4, имеющий 4 входа, можно назвать «4-НЕ-И» (произносится «четыре не и»), но чаще применяют просто «4-И» (т.к. из названия не ясно, на каком именно входе выполнена инверсия). Если инверсия выполнена на выходе элемента «И» с тремя входами, то такой элемент называют «3-И-НЕ» (произносится «три и не»).
Рис. 3. Логическое «НЕ» Рис. 4. Логические элементы «И» и «НЕ
Рис. 5. Логические элементы «И» и «НЕ
Ступени релейной защиты (РЗ)
Как и любой промышленный продукт, электроэнергия имеет свое качество, вот его параметры:
- размах напряжения (вольты) и тока (амперы);
- частота сети (герцы);
- переменный ток обозначается синусоидой в ней есть посторонние шумы, несколько сбивающие с ритма гармонию;
- и некоторые другие малопонятные неспециалистам параметры.
Принцип действия релейной защиты покажем на примерах. У каждого параметра есть своя РЗА. Их роль:
Непрерывно реле следит за его состоянием. Например, за частотой, если она падает ниже 50 герц, или напряжением на ЛЭП 110 кВт. Сопоставляет фактический показатель с диапазоном, названным уставкой.
В случае ухода за границу стандарта аппаратура производит коммутацию логочасти.
Пропустим ряд узко используемых терминов и скажем, что есть в итоге: спецустройство снимает с ЛЭП напряжение. РЗА выполняет не одну, а несколько защит – основную и резервную.
1.6. Источники оперативного тока
Оперативный ток – питает цепи дистанционного управления
выключателями, оперативные цепи релейной защиты, автоматики.
Основное
требование к источникам оперативного тока – надежность, при КЗ и ненормальных
режимах напряжение источников оперативного тока и их мощность должны иметь
достаточную величину как для действия релейной защиты,
так и для отключения выключателей.
Постоянный
оперативный ток
Источниками
данного тока являются аккумуляторные батареи напряжением 110…220 В. Для
повышения надежности сеть постоянного тока секционируется (рис1.6.1). Аккумуляторные батареи обеспечивают питание
независимо от состояния основной сети и являются самым надежным источником
питания. К недостаткам можно отнести высокую стоимость, необходимость в
зарядных агрегатах, сложную сеть постоянного тока.
Рис. 1.6.1
Переменный оперативный ток
Источниками служат измерительные
трансформаторы тока и напряжения, а также трансформаторы собственных нужд,
подключаемые на ток и напряжение самой сети.
Трансформаторы напряжения и
трансформаторы собственных нужд не пригодны для питания цепей релейной защиты
при КЗ – так как напряжение в сети при этом резко снижается. Могут
использоваться при ненормальных режимах: перегрузка, замыкание на землю.
Трансформаторы тока надежны для защит
от КЗ – ток при этом увеличивается, мощность достаточна для питания оперативных
цепей. Однако трансформаторы тока не обеспечивают необходимой мощности при
повреждениях и ненормальных режимах, не сопровождающихся резким увеличением
тока.
Чаще всего используется комбинированное
питание от трансформаторов тока и напряжения. Принципиальная схема блоков
питания типов БПТ представлена на рис. 1.6.2.
Рис. 1.6.2
Классификация
Всё разнообразие приборов релейной защиты классифицируется по следующим основным признакам:
По типу подключения они бывают первичными и подключаются непосредственно в электрическую сеть. Вторичные приборы подсоединяются в неё с помощью трансформатора, дающего гальваническую развязку.
По исполнению они выпускаются электромеханическими: в них сеть замыкается и размыкается с помощью механических контактов. В современных электронных аппаратах цепью управляют полупроводники, при этом не происходит физического размыкания контактов.
По назначению оно может выполнять две задачи: логическую и измерительную функции. Логические приборы принимают решение на основе изменяющихся внешних характеристик системы. Измерительные аппараты производят только замер её значений.
По методу работы приборы классифицируются на прямые и косвенные изделия. Изделия прямого действия механически связаны с блоком отключения, а косвенные управляют механизмом отключения электропитания.
ОСНОВНЫЕ ВИДЫ УСТРОЙСТВ РЕЛЕЙНОЙ ЗАЩИТЫ И АВТОМАТИКИ
Типы УРЗА можно классифицировать по параметрам режима работы сети, на которые они реагируют.
Токовые защиты.
Наибольшее распространение получили токовые защиты, поскольку именно повышенное значение тока является критерием такого частого вида нарушения режима работы как короткое замыкание. В основе токовой релейной защиты находится реле тока.
Традиционно используемыми являются реле электромеханического типа, состоящие из токовой катушки и подвижной электромагнитной системы, замыкающей контакты. На смену этим приборам пришли полупроводниковые устройства, а с развитием цифровых технологий и микропроцессорные системы релейной защиты.
Независимо от элементной базы, логика работы защит остаётся в принципе той же. Конечно, микропроцессорные системы способны реализовать более сложный и разветвлённый алгоритм действий.
В простейшем случае, на реле выставляется требуемая уставка – значение тока, при котором реле должно сработать. Первичными преобразователями тока являются измерительные трансформаторы или датчики тока.
К разновидности токовых защит относятся дифференциальные защиты, реле которых включается на разность токов. Дифференциальные токовые реле входят в комплект релейной защиты трансформаторов и шин подстанций.
Защиты по напряжению.
Среди самых распространённых представителей этого класса групповая секционная защита минимального напряжения.
Логика работы этой автоматики увязана с технологическим процессом, электропривод оборудования которого питается от одной секции подстанции. Автоматика минимального напряжения имеет двухступенчатое исполнение. Типовая последовательность работы выглядит следующим образом.
Секция, к которой подключены электродвигатели приводов механизмов технологического процесса (например, это могут быть механизмы котла тепловой электростанции), имеет два питания – от рабочего и резервного трансформаторов.
При отключении рабочего трансформатора срабатывает автоматика включения резерва (АВР). Через небольшой промежуток времени к секции подключается резервный трансформатор.
За время бестоковой паузы нагруженные механизмы успевают затормозиться. После подключения резервного трансформатора начинается самозапуск электродвигателей механизмов.
Повышенный ток, обусловленный групповым запуском двигателей, вызывает посадку напряжения на секции. При снижении напряжения до уставки первой ступени автоматики, происходит отключение наименее значимых для технологического процесса механизмов.
Делается это для того, чтобы облегчить запуск более важного оборудования и удержать станционный котёл (или другой агрегат) в работе.
Если это не помогает и напряжение, продолжая снижаться, достигает уставки второй ступени, отключается вторая группа оборудования. В этой ситуации в работе остаются только механизмы, обеспечивающие безаварийный останов всего технологического процесса (котла).
2012-2020 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Принципы проектирования
Несмотря на то, что на фото все блоки релейной защиты выглядят одинаково, выпускается они в различных конфигурациях и разными производителями. При проектировании к любым компонентам применяются одинаковые требования к работоспособности.
Чтобы оборудование исправно работало и не давало ошибочных срабатываний при проектировании необходимо придерживаться следующих четырех требований. Это надежность, чувствительность к срабатыванию, быстродействие и селективность. Надежность характеризуют следующие свойства: безотказность, ремонтопригодность, длительный срок эксплуатации и сохранность.
Чувствительность характеризует процентное превышение измеряемого параметра, необходимое для срабатывания. Быстродействие определяется сложением времени срабатывания логического блока управления и времени необходимого для выключения системы.
В некоторых случаях требуется задержка срабатывания. Для этого в него вводятся специальные реле. В большинстве случаев требуется мгновенное срабатывание. В новых выпускаемых конструкциях добиваются сокращения этого времени и достижения максимального быстродействия.
Селективность или избирательность позволяет локализовать место аварии. Благодаря резервированию неисправный участок отключается, и электроэнергия подается в обход его по исправным каналам. Конструкция устройств должна при необходимости позволять оперативно исключать аварийные участки и перенаправлять электроэнергию по резервным каналам.
Виды
Релейная автоматика может осуществлять контроль за следующими основными параметрами линии электропередач и оборудования и при достижении опасных значений выполняет его отключение:
Максимальный ток. При достижении тока выше определенного значения срабатывает отключающее реле.
Направление мощности. Такой вид контроля помимо величины тока учитывает его направление.
Разница токов на входе и выходе в оборудование. Он бережет генераторы и трансформаторы с помощью сравнения параметров на входе и выходе. При достижении опасных характеристик производится отключение потребителей.
Логические приборы определяют места коротких замыканий и позволяют отключить опасный участок.
Пониженное и повышенное напряжение. При наличии коротких замыканий напряжение понижается. Повышение напряжения может быть вызвано ударом молнии. Любое изменение напряжения опасно для оборудования и электрических сетей. При изменении значений автоматика отключает линию.
Автоматическая разгрузка линии при снижении частоты тока в ней. При снижении частоты тока в электросети автоматика отключает часть потребителей. При повышении частоты необходимо наоборот нагружать сеть, для снижения частоты вращения генератора.
Исходя из этого перечня выполняемых задач, становится понятно, для чего нужна релейная защита. Но существуют изделия, которые осуществляют не выключение, а автоматическое подключение потребителей. Оно может осуществляться для повторного включения энергоснабжения через заданный интервал времени или для автоматического ввода резервной мощности. В этом случае в сеть вводится дополнительные генерирующие мощности для компенсации дефицита.
Еще виды РЗА
Её техника используется для контроля работоспособности всех технологических систем, для охлаждения которых используются масла, в частности, трансформаторы. Поломка в них вызывает высокую температуру с выделением в атмосферу газов из состава масел. При этом охлаждающие средства теряют стандартный химический состав и снижают диэлектрические свойства.
На такие технологические сбои мгновенно реагирует механическая релейная защита. Она учитывает и изменения в химии газов, и продукты распада масел.
Можно отметить, что РЗА работает на подобных принципах и при появлении таких повышающих факторов:
- термо;
- давления той или иной среды или предпосылок от механики.
И это еще не все основные классификации релейных защит – поскольку данный формат статьи не позволяет нам более широко раскрыть РЗА.
Назначение релейной защиты
Во время проектирования любой электрической схемы снабжения обязательным является расчет релейной защиты автоматики (РЗА). Если сказать простыми словами, то она служит для того, чтобы при коротком замыкании, или другом ненормальном режиме работы в схеме потребителя, эти перегрузки не повлияли на работы другого оборудования. Если они, конечно, завязаны все в одной энергетической системе.
При возникновении короткого замыкания напряжение в цепи падает, зато ток возрастает до максимального значения. Этот факт может повлечь за собой не только возгорание, но и выход со строя всей питающей сети, если бы в таких аварийных случаях релейная защита вовремя не отключала данный повреждённый участок. Для начинающих упрощённую РЗА в действии можно увидеть в быту при замыкании фазного и нулевого провода. При этом отключается автомат, питающий данную сеть, в котором установлена токовая отсечка. Аварийных ситуаций на подстанции или на производстве может быть больше это и перенапряжение, и выделение газа при неисправности трансформатора и т. д.
Работа и назначение релейной защиты организована на постоянном контроле, а также оценке технических и электрических параметров оборудования и цепи, которую она должна защищать. Зачастую устройства данной релейной автоматики скомпонованы в элементах электрических сетей и объединены в единую систему.
3-1. Токовая отсечка и максимальная токовая защита одиночных линий 35 и 110 кВ
Основные условия расчета. Основные условия расчета максимальных токовых защити токовых отсечек, изложенные в Главе 1, справедливы и для линий 35 и 110 кВ без ответвлений и с ответвлениями. В выражении (1-1), коэффициент самозапуска kсзп определяется по суммарному току самозапуска нагрузки всех трансформаторов, подключенных к защищаемой линии и ко всем следующим (по направлению тока) линиям того же напряжения. Для этого в расчетной схеме все нагрузки, подключаемые к каждому трансформатору, представляются сопротивлениями обобщенной или бытовой нагрузки, приведенными к рабочей максимальной мощности трансформатора. Высоковольтные двигатели учитываются отдельно.
Надежность ЛЗШ
ЛЗШ, с точки зрения тестирования на работоспособность, имеет отличие от прочих видов защит. Она редко срабатывает при испытаниях сотрудниками измерительных лабораторий. Объясняется это тем, что ЛЗШ отводится менее значимая роль, соответственно, она имеет более длительные по времени выдержки срабатывания и просто не успевает опередить другие виды защит.
Чаще всего логическая защита шин даёт сбой вследствие КЗ трансформатора тока либо его виткового замыкания. К счастью, происходит такое довольно редко. В этом случае трансформатор просто не в состоянии корректно измерить протекающий через контролируемую им шину ток. Поэтому не может сформироваться сигнал блокировки защиты ЛЗШ, что приводит к её непреднамеренному срабатыванию.
Важно! Перед отключением проводов от трансформатора тока его выводы требуется замкнуть между собой. В противном случае в обмотке ТТ возможно наведение высоковольтного потенциала, который опасен для жизни обслуживающего персонала и может привести к повреждению оборудования
ЛЗШ является сравнительно простой и действенной системой по обеспечению бесперебойной работы энергосистемы. Её применение ощутимо снижает негативные последствия аварийных ситуаций, а также существенно уменьшает риск их возникновения.
1.1 Назначение релейной защиты и автоматики
- Категория: В.Н. Копьев «Релейная защита. Принципы выполнения и приенения»
Энергетическая система представляет собой сложную многозвенную техническую систему, предназначенную для производства, распределения и потребления электроэнергии. Процессы, происходящие в энергосистеме, отличаются быстротой, взаимосвязанностью, единством процессов производства, распределения и потребления электроэнергии. Управление ими без применения специальных технических средств, называемых средствами автоматического управления, в большинстве случаев оказывается невозможным.
Условно, все устройства автоматики по своему назначению и области применения можно разделить на следующие две большие группы: местную и системную технологическую автоматику, местную и системную противоаварийную автоматику.
Технологическая автоматика обеспечивает автоматическое управление в нормальном режиме:
-
пуск блоков турбина-генератор и включение на параллельную работу синхронных генераторов;
-
автоматическое регулирование напряжения и реактивной мощности на шинах электростанции;
-
автоматическое регулирование частоты и обеспечения режима заданной нагрузки электростанции;
-
оптимальное распределение электрической нагрузки между блоками;
-
регулирование напряжения в распределительной сети;
-
регулирование частоты и перетоков мощности и т.п.
Назначением противоаварийной автоматики является предотвращение или наиболее эффективная ликвидация последствий аварий:
-
релейная защита электрооборудования от коротких замыканий и ненормальных режимов;
-
автоматическое повторное включение;
-
автоматическое включение резерва;
-
автоматическая частотная разгрузка;
-
автоматическая ликвидация асинхронного режима.
-
автоматика предотвращения нарушения устойчивости и т.д.
Из перечисленных видов устройств автоматики особо выделяется релейная защита, изучающая поведение электроэнергетической системы и ее элементов в режимах глубоких возмущающих воздействий и скачкообразных изменений электрических параметров. Эти возмущения вызываются различного рода короткими замыканиями, которых могут возникнуть по причинам:
-
пробоя или перекрытия изоляторов линий электропередач в случае грозовых перенапряжений или при их загрязнении;
-
обрыва проводов или грозозащитных тросов из-за обледенения и вибраций;
-
механических повреждений опор, поломке изоляторов разъединителей, схлестывании проводов;
-
ошибочного действия оперативного персонала;
-
заводских дефектов оборудования и ряда других факторов.
Управление энергосистемой при нарушении ее нормальных режимов тесно связано с работой релейной защиты. Поэтому изложения материала целесообразно начать с рассмотрения этого вида автоматики. Требование безаварийности и надежности энергоснабжения закладывается уже на стадии проектирования энергосистемы за счет оптимального выбора источника электроэнергии (уголь, газ, вода или другое), расположения электростанций, передачи мощности, учета характеристик нагрузок и перспектив их роста, способов регулирования напряжения и частоты, планированием режимов работы и т.п. И все же полностью исключить факт отказа оборудования из-за коротких замыканий нельзя.
На релейную защиту возлагаются следующие функции:
1.Автоматическое выявление поврежденного элемента с последующей его локализацией. Защита подает команду на отключение выключателей этого элемента, восстанавливая нормальные условия работы для неповрежденной части энергосистемы.
2.Автоматическое выявление ненормального режима с принятием мер для его устранения. Нарушения нормального режима в первую очередь вызываются различного рода перегрузками, которые не требуют немедленного отключения. Поэтому защита действует на разгрузку оборудования или выдает сообщение дежурному персоналу.
В качестве примера на Рис.1 представлено современное микропроцессорное реле, выпускаемое инженерно-производственной фирмой «РеонТехно», на Рис.2 — типовая панель защиты линии, выполненная на электромеханических реле на Рис.3 — многофункциональное устройство РЗА НТЦ «Механотроника».
Рис. 1. Микропроцессорные реле тока типа РСТ 80АВ, выпускаемое ИПФ «Реон-Техно»
Рис. 2. Типовая панель защиты линии, выполненная на электромеханических реле
Рис. 3. Многофункциональное цифровое устройство релейной защиты и автоматики НПЦ «Механотроника»
Из чего состоит ЛЗШ
Отвечая на вопрос «ЛЗШ защита что это», можно сказать, что она включает в себя сложный комплекс аппаратных и программных средств, предназначенный для отключения линии при внештатном режиме работы. Все их условно можно разделить на 3 категории:
- Датчики – устройства, считывающие в реальном времени информацию о состоянии энергосистемы. Например, ток и напряжение на силовых шинах, частоту, сдвиг фазы и cosф нагрузки, а также температуру трансформаторов, окружающего воздуха и тому подобные показатели. Вся эта информация поступает в контроллер.
- Микропроцессорные терминалы – вычислительный орган системы. С натяжкой его можно назвать компьютером. Внешне представляет собой небольшую коробку с экраном, отображаемым состояние сети, и множеством кнопок для настройки прибора и его взаимодействия с человеком.
- Исполнительные органы – по аналогии с ПК это периферийные устройства. К ним относятся высоковольтные выключатели, вентиляторы и насосы систем охлаждения, различные приводы для коммутирующих устройств.
Упрощённо всё это работает следующим образом. На шинах подстанции возникает какая-либо внештатная ситуация, например, короткое замыкание. Трансформаторы тока регистрируют критическое превышение этого параметра. С них сигнал передаётся в микропроцессорный терминал, который его обрабатывает. При этом учитывается ток короткого замыкания, его продолжительность и ряд других характеристик. Затем терминал подаёт сигнал на исполнительный орган – вакуумный выключатель, который отключает участок линии, поражённый коротким замыканием.
Трансформаторы тока