Частотный привод 5-200гц (10-400гц) своими руками

Частотный привод 5-200гц (10-400гц) своими руками

Преобразуем двигатель в генератор

Как говорилось ранее, допустимо использовать асинхронный двигатель в качестве генератора. Рассмотрим небольшой мастер-класс.

Вам потребуется двигатель от обычной стиральной машинки.

  • Сделаем меньше толщину сердечника и проделаем несколько несквозных отверстий.
  • Вырежем из листовой стали полосу, размер которой равен размеру ротора.
  • Займёмся монтажом неодимовых магнитов (не меньше 8 шт.). Закрепим их клеем.
  • Закроем ротор при помощи листа плотной бумаги и закрепим края липкой лентой.
  • Роторный торец промажем мастичным составом в целях герметизации.
  • Свободное место между магнитами заполним смолой.
  • После того, как эпоксидка застынет, бумажный слой убираем.
  • Отшлифовываем ротор при помощи наждачной бумаги.
  • При помощи двух проводков подсоединяем устройство к рабочей обмотке, убираем ненужные проводники.
  • При желании заменяем подшипники.

Частотный привод 5-200гц (10-400гц) своими руками

Устанавливаем выпрямитель тока и монтируем контроллер зарядки. Наш генератор из асинхронного двигателя своими руками готов!

Частотный привод 5-200гц (10-400гц) своими руками

Более подробную инструкцию как сделать генератор асинхронного типа можно найти в Интернете.

Частотный привод 5-200гц (10-400гц) своими руками

Режимы управления

Частотники различают по видам управления скоростью вращения:

  • со скалярным режимом управления (отсутствие обратной связи);
  • с векторным режимом управления (наличие обратной связи, или ее отсутствие).

Наши читатели рекомендуют!

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.

При первом режиме подлежит управлению магнитное поле статора. В случае векторного режима управления учитывается взаимодействие магнитных полей ротора и статора, оптимизируется момент вращения при работе на разной скорости. Это является главным различием двух режимов.

Кроме этого, векторный способ более точен, эффективен. Однако в обслуживании — более затратен. Рассчитан он на специалистов с большим багажом знаний и навыков. Скалярный способ проще. Он применим там, где параметры на выходе не требуют точной регулировки.

Подключение методом «звезда-треугольник»

Для продолжительной эксплуатации электродвигателя важен мягкий запуск, а для высокой производительности – большая мощность. Для того чтобы сочетать преимущества описанных выше способов соединения обмоток, была разработана новая схема: треугольник-звезда. Она подходит для высокомощных моторов от 5 кВт.

Частотный привод 5-200гц (10-400гц) своими руками

Для подключения электродвигателя таким способом понадобится реле времени. Технически управление выглядит следующим образом:

  1. Через реле времени К1 и контакт К2 на участке электроцепи контактора, обозначаемого К3, подается оперативное напряжение;
  2. Контактор К3 замыкается, но размыкается контакт К3 на части электроцепи контактора, условно обозначаемого К2 для блокировки ошибочного включения. Одновременно в электроцепи контактора К1, совмещенного с клеммами временного реле, включается контакт К3;
  3. При подключении контактора К1 замыкается контакт К1, расположенный на участке электроцепи с его катушкой. Тут же срабатывает реле времени, которое разъединяет контакт К1 на участке цепи с катушкой контактора К3, но соединяет его с катушкой контактора, обозначаемого на схеме К2;
  4. Контактор К3 выключается, а контакт К3, расположенный на части цепи, где находится катушка второго контактора К2, замыкается;
  5. Включается контактор К2, но контакт К2 на участке третьего контактора К3 размыкается в целях блокировки ошибочного включения.

Описание принципа питания:

  1. После включения третьего контактора замыкается третий контакт. При этом на блоке расключения начал обмоток (БРНО) замыкаются концы обмоток по схеме «звезда»: U2, V2 и W2;
  2. После включения первого контактора замыкается первый контакт. При этом питание подается на концы обмоток: U1, V1 и W1;
  3. После срабатывания временного реле происходит переключение на соединение треугольником;
  4. Контактор третий отключается, но включается второй с замыканием второго контакта;
  5. Питание теперь подается на концы обмоток, расположенных на БРНО (U2, V2 и W2).

Описать можно простыми словами: включение в работу электродвигателя сначала происходит посредством соединения обмоточных выводов в звезду. Этим обеспечивается мягкий и плавный запуск без перегревания. Когда мотор наберет обороты, автоматические происходит переключение на треугольное соединение. Момент переведения сопровождается незначительным снижением скорости вращения. Однако она быстро восстанавливается.

Подключение и настройка

Для подключения частотного преобразователя общая схема подключения асинхронного электродвигателя. В цепи преобразователь располагается сразу после дифференциального автомата, рассчитанного на ток, равный номиналу двигателя. При установке преобразователя в трехфазную сеть нужно использовать трехфазный автомат с общим рычагом. Это позволяет в случае возникновения перегрузки на одной из фаз разом отключить все питание. Значение срабатывания должно быть подобрано в соответствии с током одной фазы двигателя. А в ситуации, когда частотный преобразователь устанавливается в сеть с однофазным током, целесообразно использовать автомат, рассчитанный на тройное значение фазы. Так или иначе, установка прибора должна осуществляться вручную, без «врезания» в разрыв «нуля» и заземления.

Частотный привод 5-200гц (10-400гц) своими руками

Фактически настройка ПЧ заключается в выборе схемы присоединения фазных проводов к клеммам на электродвигателе, однако она чаще зависит от того, к какому типу сети они подключаются. Для трехфазных электросетей на производственных объектах двигатель подключают «звездой» — эта схема предусматривает параллельное подключение проводов обмоток. Для бытовых однофазных сетей с напряжением 220В используется схема «треугольник» (учитывайте при этом, что величина выходного тока не должна превышать номинал более чем на 50%).

Пульт управления следует расположить в любом месте, наиболее удобном для использования. Схема его подключения указывается в технической документации к частотному преобразователю. Перед монтажом и до подачи питания рычаг следует установить в выключенное положение. После переведения рычага во включенное положение должен загореться соответствующий световой индикатор. По умолчанию для запуска устройства следует нажать клавишу «RUN». Для постепенного наращивания оборотов двигателя надо медленно поворачивать рукоятку пульта. При обратном вращении следует переключить режим с помощью кнопки реверса. Теперь можно установить рукоятку в положение, устанавливающее необходимую скорость вращения

Обратите внимание, что на пультах управления некоторых частотных преобразователей вместо механической частоты вращения указывается частота питающего напряжения

Типовые конфигурации и принципы действия электродвигателей

Есть два наиболее распространенных вида моторов, подключение которых можно выполнить без дополнительных деталей. Это асинхронные двигатели с однофазным или трехфазным питанием и коллекторные устройства.

Частотный привод 5-200гц (10-400гц) своими руками

В асинхронных однофазных двигателях обмотка на роторе короткозамкнутая, по конструкции напоминающая колесо для белки. Замкнутые на кругах стержни входят в пазы сердечника, где при индукции тока создается поле уравновешивающее электромагнитное поле катушки. Для того, чтобы после подключения к сети мотор заработал, нужен стартовый толчок. В некоторых случаях, например на точильном станке двигатель можно запустить вручную, простым вращательным движением вала.

Частотный привод 5-200гц (10-400гц) своими руками

Можно также снабдить самодельный инструмент дополнительной стартовой обмоткой или частотным преобразователем, который обеспечит плавный запуск мотора. Начало вращения в асинхронных двигателях с трехфазной обмоткой статора происходит автоматически, благодаря чередованию фаз

Как видно на структурной схеме, в коллекторном электродвигателе имеются рабочая и пусковая обмотки. Переключение обмотки на роторе происходит при помощи графитовых щеток, единовременно под напряжением находится только одна из рамок, с магнитным полем, перпендикулярным полю статорной обмотки.

Частотный привод 5-200гц (10-400гц) своими руками

Частотный привод 5-200гц (10-400гц) своими руками

Трехфазный двигатель с магнитным пускателем

Подключение трехфазного двигателя с помощью магнитного пускателя, осуществляется также, как и через автоматический выключатель. Просто эта схема дополняется блоком включения и выключения с соответствующими кнопками ПУСК и СТОП.

Одна нормально замкнутая фаза, подключенная к двигателю, соединяется с кнопкой ПУСК. Во время нажатия происходит смыкание контактов, после чего ток поступает к двигателю. Однако, следует учесть, что в случае отпускания кнопки ПУСК, контакты окажутся разомкнутыми и питание поступать не будет. Чтобы не допустить этого, магнитный пускатель оборудуется еще одним дополнительным контактным разъемом, так называемым контактом самоподхвата. Он выполняет функцию блокировочного элемента и препятствует разрыву цепи при выключенной кнопке ПУСК. Окончательно разъединить цепь можно только с помощью кнопки СТОП.

Таким образом, подключение трехфазного двигателя к трехфазной сети может быть выполнено различными способами. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации.

Читайте далее:
Частотный привод 5-200гц (10-400гц) своими руками

Как переделать трехфазный двигатель для подключения в однофазную сеть

Частотный привод 5-200гц (10-400гц) своими руками

Подключение трехфазного двигателя к однофазной сети

Частотный привод 5-200гц (10-400гц) своими руками

Схема подключения трехфазного электродвигателя

Частотный привод 5-200гц (10-400гц) своими руками

Схема реверса трехфазного двигателя

Частотный привод 5-200гц (10-400гц) своими руками

Как подобрать и подключить конденсатор для трехфазного двигателя

Частотный привод 5-200гц (10-400гц) своими руками

Трехфазное УЗО

Как подобрать электродвигатель

Чтобы исключить ошибки на стадии проекта необходимо уделить внимание конструкции приобретаемого двигателя, а также его электрическим характеристикам: потребляемой мощности, величине напряжения питания, числу оборотов ротора. Асинхронные машины обратимы

Они способны работать в режиме:

Асинхронные машины обратимы. Они способны работать в режиме:

· электродвигателя, когда на них подается внешнее напряжение;

· или генератора, если их ротор вращает источник механической энергии, например, водяное либо ветряное колесо, двигатель внутреннего сгорания.

Обращаем внимание на заводскую табличку, конструкцию ротора и статора. Учитываем их особенности при создании генератора

Что надо знать о конструкции статора

У него на общем сердечнике магнитопровода намотаны три изолированных обмотки для питания от каждой фазы напряжения.

Частотный привод 5-200гц (10-400гц) своими руками

Их подключают одним из двух способов:

1. Звездой, когда все концы собраны в одну точку. На 3 начала и общий вывод концов подается напряжение по четырем проводам.

2. Треугольником — конец одной обмотоки подключен к началу другой так, что схема собрана кольцом и из нее выходят всего три провода.

Более подробно эта информация изложена в статье моего сайта о подключении трехфазного двигателя в бытовую однофазную сеть.

Особенности конструкции ротора

На нем тоже создан магнитопровод и три обмотки. Они соединяются одним из двух способов:

1. через контактные выводы у двигателя с фазным ротором;

2. накоротко замкнуты алюминиевой вставкой в конструкцию беличьего колеса — асинхронные машины.

Частотный привод 5-200гц (10-400гц) своими руками

Частотный привод 5-200гц (10-400гц) своими руками

Нам нужен ротор короткозамкнутый. Все схемы разработаны для него.

Конструкцию фазного ротора тоже можно использовать в качестве генератора. Но ее придется переделать: просто шунтируем все вывода между собой закоротками.

Как учесть электрические характеристики двигателя

На работу генератора повлияют:

1. Диаметр провода обмотки. От него напрямую зависит нагрев конструкции и величина приложенной мощности.

2. Расчетная скорость вращения ротора, указываемая числом оборотов.

3. Способ соединения обмоток в звезду или треугольник.

4. Величина потерь энергии, определяемая КПД и косинусом φ.

Их смотрим на табличке или вычисляем косвенными методами.

Частотный привод 5-200гц (10-400гц) своими руками

Вариант 1: переподключение рабочей намотки

Чтобы изменить направление вращения двигателя, можно только поменять местами начало и конец рабочей (постоянной включенной) обмотки, как это показано на рисунке. Можно подумать, что для этого придется вскрывать корпус, доставать намотку и переворачивать ее. Этого делать не нужно, потому что достаточно поработать с контактами снаружи:

  1. Из корпуса должны выходить четыре провода. 2 из них соответствуют началам рабочей и пусковой намоток, а 2 – их концам. Определите, какая пара принадлежит только рабочей обмотке.
  2. Вы увидите, что к этой паре подсоединены две линии: фаза и ноль. При отключенном двигателе произведите реверс путем перекидывания фазы с начального контакта намотки на конечный, а нуля – с конечного на начальный. Или наоборот.

Частотный привод 5-200гц (10-400гц) своими руками

В результате получаем схему, где точки С и D меняются между собой местами. Теперь ротор асинхронного двигателя будет вращаться в другую сторону.

Реализация части управления

Включать и выключать эти три контактора можно разными способами, вот несколько:

  1. Три тумблера. Самый простой и дешевый способ. А что? Главное соблюсти алгоритм!
  2. Специальный переключатель 0 – Y – Δ. Его можно купить или собрать самостоятельно, из любого галетного или кулачкового, типа ПКП.
  3. Релейная схема с таймером. Её рассмотрим ниже.
  4. Управление от специализированного реле. Это отдельная статья, следите за новостями.
  5. Управление от универсального контроллера (PLC). Тут рассматривать нечего – это тот же 1 или 2 вариант, только управляет не человек, а программа.

Слаботочная часть может быть вообще гальванически развязана от силовой, например через трансформатор 380 /110 В или блок питания 220 / 24 VDC. Более того, вообще питаться от аккумулятора 12 В. Главное, чтобы напряжение катушек пускателей соответствовало. Что такое гальваническая развязка и почему она безопасна – читайте про систему заземления IT.

Короче, вот простейшая схема:

Схема управления “Звезда-Треугольник” с реле времени. Простейшая теоретическая

Что такое КМ1, КМ2, КМ3, вы уже знаете, а вот КА1 – это реле времени с задержкой при включении. Реле может быть любым, хоть электронным, хоть пневматическим типа ПВЛ. Главное, чтобы контакты переключались из исходного состояния через время задержки после подачи питания на КА1.

Подавать питание на схему (запускать двигатель) можно любыми способами – хоть тумблером, хоть через классическую схему с самоподхватом.

Минус такой схемы – есть опасность конфликта между КМ2 и КМ3. Поэтому я не очень люблю такую схему, т.к. она работает “на грани”, и её безаварийность очень зависит от механики и конструкции контакторов. Из-за этого могут подгорать контакты, а может и выбивать вводной автомат. Поэтому обязательно необходима блокировка (электрическая и желательно механическая):

Практическая схема “Звезда-треугольник” с блокировкой

Блокировка реализована на НЗ контактах, подробно об этом и не только в статье про подключение двигателя при помощи  магнитного пускателя. Между катушками показана механическая блокировка, не путать со схемой “Треугольник”!

Это реальная схема, можно её применять. Если что не понятно – спрашивайте.

Да, ещё замечание. Иногда включение питания общего контактора КМ1 реализуют не напрямую, а через НО контакт “Звезды” КМ2, затем КМ1 становится на самоподхват через свой НО контакт. Это необходимо для дополнительной проверки работоспособности реле времени КА1.

Схемы подключения

Кто немного не в курсе, как подключаются к трехфазной сети асинхронные электродвигатели – настоятельно рекомендую ознакомиться с моей статьёй Подключение двигателя через магнитный контактор. Я предполагаю, что читатель знает, как включается электродвигатель, зачем и какая нужна защита двигателя, поэтому в этой статье я эти вопросы опускаю.

В теории всё просто, а на практике приходится поломать голову.

Очевидно, что включение обмоток двигателя Даландера можно реализовать двумя путями – через переключатель и через контакторы.

Переключение скоростей с помощью переключателя

Рассмотрим сначала схему попроще – через переключатель типа ПКП-25-2. Тем более, что только такие принципиальные схемы мне и встречались.

Переключатель должен иметь три положения, одно из которых (среднее) соответствует выключенному двигателю. Про устройство переключателя – чуть позже.

Подключение двухскоростного двигателя. Схема на переключателе ПКП.

Крестиками на пунктирах положения переключателя SA1 отмечены замкнутые состояния контактов. То есть, в положении 1 питание от L1, L2, L3 подается на треугольник (выводы U1, V1, W1). Выводы U2, V2, W2 остаются не подключенными. Двигатель вращается на первой, пониженной скорости.

При переключении SA1 в положение 2 выводы U1, V1, W1 замыкаются друг с другом, а питание подается на U2, V2, W2.

Переключение скоростей с помощью контакторов

При запуске с помощью контакторов схема будет выглядеть аналогично:

Схема включения двигателя на разных скоростях на контакторах

Здесь на первую скорость двигатель включает контактор КМ1, на вторую – КМ2. Очевидно, что физически КМ2 должен состоять из двух контакторов, поскольку необходимо замыкание сразу пяти силовых контактов.

Краткая историческая справка

Первый двигатель асинхронного типа был изобретён ещё во время Российской Империи, а именно 8 марта 1889 г. Автор изобретения – великий русский мастер инженерной мысли М. О. Доливо-Добровольский.

Частотный привод 5-200гц (10-400гц) своими руками

Сегодня область использования подобных электродвигателей довольно широка. Они считаются наиболее распространённым видом двигателей, поскольку совершили технический переворот в промышленной сфере.

Можно дать следующее описание асинхронных электродвигателей: это единственная разновидность двигателей, в которой полюсы создаются благодаря такому явлению, как индукция. Поэтому их часто называют индукционными.

Частотный привод 5-200гц (10-400гц) своими руками

Частотный привод 5-200гц (10-400гц) своими руками

Устройство асинхронных генераторов

При рассмотрении устройства асинхронных генераторов, необходимо обратить особое внимание на основные элементы электрической машины без которых он не сможет существовать, а именно:

  • Ротор генератора — это элемент вращения, на котором наводится электродвижущаяся сила. Именно вал ротора и является тем элементом, который приводится в движение. Обычно обладает короткозамкнутыми обмотками.
  • Статор или статарная обмотка неподвижный элемент крепящийся к корпусу генератора и внутри которого находится ротор. Именно в этой обмотке индуцируется рабочее напряжение генератора.
  • Корпус генератора.
  • Подшипники, удерживающие ротор в рабочем положении.
  • Элементы безопасности такие как, термореле, коротко замыкатель и щетки регулятора.

Частотный привод 5-200гц (10-400гц) своими руками

Вариант 3: смена пусковой обмотки на рабочую, и наоборот

Организовать реверс однофазного мотора 220В теми способами, что описаны выше, можно только при условии, что из корпуса выходят отводки от обеих обмоток со всеми началами и концами: А, В, С и D. Но часто встречаются моторы, в которых производитель намеренно оставил снаружи только 3 контакта. Этим он обезопасил устройство от различных «самоделок». Но все же выход есть.

Частотный привод 5-200гц (10-400гц) своими руками

На рисунке выше изображена схема такого, «проблемного», мотора. У него выходят из корпуса только три провода. Они помечены коричневым, синим и фиолетовым цветами. Зеленая и красная линии, соответствующие концу В пусковой и началу С рабочей намотки, соединены между собой внутри. Доступ к ним без разборки двигателя мы получить не сможем. Поэтому изменить вращение ротора одним из первых двух вариантов не представляется возможным.

В этом случае поступают так:

  1. Снимают конденсатор с начального вывода А;
  2. Подсоединяют его к конечному выводу D;
  3. От проводов А и D, а также фазы, пускают отводки (можно сделать реверс с использованием ключа).

Частотный привод 5-200гц (10-400гц) своими руками

Посмотрите на рисунок выше. Теперь, если подключить фазу к отводку D, то ротор вращается в одну сторону. Если же фазный провод перекинуть на ветку A, то можно изменить направление вращения в противоположную сторону. Реверс можно осуществлять, вручную разъединяя и соединяя провода. Облегчить работу поможет использование ключа.

  • Длина пусковой и рабочей намоток одинакова;
  • Площадь их поперечного сечения соответствует друг другу;
  • Эти провода изготовлены из одного и того же материала.

Все эти величины влияют на сопротивление. Оно у обмоток должно быть постоянным. Если вдруг длина или толщина проводов отличаются друг от друга, то после того, как вы организуете реверс, окажется, что сопротивление рабочей намотки станет таким же, как было раньше у пусковой, и наоборот. Это может стать и причиной того, что мотор не сможет запуститься.

Осуществить реверс асинхронного мотора 220В просто, если концы обмоток отводятся из корпуса наружу. Сложнее его организовать, когда выводов всего три. Рассмотренный нами третий способ реверсирования подходит только для кратковременного включения двигателя в сеть. Если работа с обратным вращением обещает быть продолжительной, то мы рекомендуем вскрыть коробку для переключения методами, описанными в 1 и 2 варианте: так безопасно для агрегата, и сохраняется КПД.

Виды асинхронных моторов

Принято выделять следующие виды асинхронных генераторов:

С короткозамкнутым ротором. Устройство подобного типа состоит из стационарного статора и вращающегося ротора. Сердечники – стальные. В пазах сердечника статора размещён изолированный провод. В пазах сердечника ротора установлена стержневая обмотка. Обмотку ротора замыкают особые кольца-перемычки.

Частотный привод 5-200гц (10-400гц) своими руками

С фазным ротором. Такое изделие имеет достаточно высокую стоимость. Требует специализированное обслуживание. Конструкция аналогична конструкции генератора с ротором короткозамкнутого типа. Отличие заключается в использовании изолированного провода в качестве обмоток.

Частотный привод 5-200гц (10-400гц) своими руками

Частотный привод 5-200гц (10-400гц) своими руками

Использование современных инверторов

Современные преобразователи производятся с использованием микроконтроллеров. Это намного расширило функциональные возможности инверторов в области алгоритмов управления и контроля за безопасностью работы.

Преобразователи с большим успехом применяют в следующих областях:

  • в системах водоснабжения, теплоснабжения для регулирования скорости насосов горячей и холодной воды;
  • в машиностроении;
  • в текстильной промышленности;
  • в топливно-энергетической области;
  • для скважинных и канализационных насосов;
  • для автоматизации систем управления технологическими процессами.

Цены источников бесперебойного питания напрямую зависят от наличия в нем частотника. Они становятся «проводниками» в будущее. Благодаря им, малая энергетика станет наиболее развитой отраслью экономики.

Дополнительные рекомендации по уходу за оборудованием

Чтобы максимально продлить срок службы частотного преобразователя старайтесь следовать следующим рекомендациям по обслуживанию:

Необходимо постоянно проводить внутреннюю очистку прибора от накапливающейся пыли

Возьмите во внимание, что из-за её уплотнения пылесос не всегда может справиться с такой задачей – гораздо проще выдувать пыль наружу небольшим компрессором.
Проводите регулярную проверку компонентом схемы и своевременную их замену. Помните, что у всех элементов различный срок эксплуатации: охлаждающие вентиляторы рассчитаны на 2-3 года, электролитические конденсаторы – на 5, а предохранители – на 10

Замены внутренних шлейфов устройства должна производиться примерно раз в 6 лет.
Принцип своевременного реагирования следует применять и в отношении последствий периодического нагрева частей устройства. Из-за него высушивается термопаста, что также приводит к выходу конденсаторов из строя. Постарайтесь менять ее чаще 1 раза в 3 года.

Внимание к внешним условиям, в которых устанавливается частотный преобразователь, тоже позволяет существенно продлить срок его эксплуатации. Это должно быть хорошо вентилируемое место, без прямых солнечных лучей, без нахождения в непосредственной близости легковоспламеняющихся жидкостей и материалов, без мусора, металлической и деревянной стружки, пыли, масляных капель, вибраций, домашних животных, мышей, тараканов… Поверхность установки должна быть ровной и устойчивой

В некоторых случаях следует обратить внимание на расположение преобразователя относительно уровня моря – с каждыми 100 метрами повышения температуру внешней среды можно уменьшать на 0,5˚C относительно нормы (-10˚C — + 45˚C).

Зачем нужны асинхронные генераторы?

Если рассмотреть фото асинхронных генераторов, то легко заметить что с первого взгляда практически невозможно отличить их от обыкновенных двигателей.

Частотный привод 5-200гц (10-400гц) своими руками

Суть в том, что это практически одни и те же электрические машины используемые в другом направлении и имеющие разные схемы подключения. Поэтому достаточно просто переделать одну такую машину в другую.

Частотный привод 5-200гц (10-400гц) своими руками

Эта статья поможет разобраться в том как это осуществить на практике. В современном мире множество генераторов и большинство из них асинхронные. Так как значительным преимуществом таких электрических машин является их простота, надежность и легкость в наладке системы.

Частотный привод 5-200гц (10-400гц) своими рукамиЧастотный привод 5-200гц (10-400гц) своими рукамиЧастотный привод 5-200гц (10-400гц) своими рукамиЧастотный привод 5-200гц (10-400гц) своими рукамиЧастотный привод 5-200гц (10-400гц) своими рукамиЧастотный привод 5-200гц (10-400гц) своими рукамиЧастотный привод 5-200гц (10-400гц) своими рукамиЧастотный привод 5-200гц (10-400гц) своими рукамиЧастотный привод 5-200гц (10-400гц) своими рукамиЧастотный привод 5-200гц (10-400гц) своими рукамиЧастотный привод 5-200гц (10-400гц) своими руками

Зачем нужны УПП?

Из физики известен принцип работы индукционного электродвигателя, вся суть которого заключается в использовании разницы между частотами вращения магнитных полей статора и ротора. Магнитное поле ротора, пытаясь догнать магнитное поле статора, способствует возбуждению большого пускового тока. Мотор работает на полной скорости, при этом значение крутящего момента вслед за током тоже увеличивается. В результате обмотка агрегата может быть повреждена из-за перегрева.

Частотный привод 5-200гц (10-400гц) своими руками

Таким образом, необходимой становится установка мягкого стартера. УПП для трехфазных асинхронных моторов позволяют защитить агрегаты от первоначального высокого тока и крутящего момента, возникающих вследствие эффекта скольжения при работе индукционного мотора.

Преимущественные особенности применения схемы с устройством плавного пуска (УПП):

  1. снижение стартового тока;
  2. уменьшение затрат на электроэнергию;
  3. повышение эффективности;
  4. сравнительно низкая стоимость;
  5. достижение максимальной скорости без ущерба для агрегата.

Нахождение начал и концов обмоток

Для асинхронных электродвигателей, работающих на одной скорости, характерно наличие шести контактов для трех обмоток (по одному контакту на начало и конец для каждой из них). Если на моторе указано их предназначение, то можно сразу приступать к подсоединению. Но иногда следы меток стираются, или их нет совсем. Тогда перед подключением необходимо определить пары выводов, а также места, где намотка начинается, а где заканчивается.

Поиск парных клемм

Сначала нужно определить выводы, принадлежащие только одной обмотке. Всего получится три пары. Для этого используйте лампу и соединительные провода:

  1. Ко второму зажиму в сети подсоедините один из выводов. Свободных останется 5;
  2. Включите лампу в сеть через третий зажим;
  3. Второй конец провода соедините с одной из клемм статора;
  4. Если свечения нет, то разъедините их и подключите к другому выводу;
  5. Меняйте соединение лампы со свободными контактами до тех пор, пока не будет замечено накала в лампочке. Как только появился свет, подключенные к сети контакты статора пометьте. Это пара одной из намоток;
  6. Точно так же определите две оставшиеся пары;
  7. Пометьте каждую пару так, чтобы в последующем не приходилось вновь их искать.

Частотный привод 5-200гц (10-400гц) своими руками

Пометка начал обмоток и их концов

Есть два метода:

  • Трансформационный;
  • Подбор фаз.

Описание метода трансформации:

  1. В одну пару включите лампу, а две оставшиеся соедините между собой последовательно, после чего подайте напряжение;
  2. Если свечения нет (рисунок б), то намотки были соединены К-Н-Н-К или Н-К-К-Н. Тогда нужно одну из намоток перевернуть, поменяв местами зажимы;
  3. Если появилось свечение (рисунок а), то на месте соединения двух пар можно смело пометить один из выводов концом, а другой – началом;
  4. Чтобы определить Н и К для обмотки, в которую включена лампа, нужно переставить ее на одну из намоток с уже определенными концами (рисунок в).

Частотный привод 5-200гц (10-400гц) своими руками

Описание способа поиска Н и К подбором фаз:

  1. Наугад попробуйте соединить двигатель звездой;
  2. Включите в сеть и следите за его работой. Если он гудит, то контакты одной из намоток поменяйте местами;
  3. Если мотор все равно гудит при работе, то верните контакты на место, но соедините с центром звезды противоположный вывод другой намотки;
  4. Если гудение пропало, то все выводы в центре – концы, а их противоположные стороны – начала. Если еще гудит, то поменяйте местами соединения третьей намотки.

Частотный привод 5-200гц (10-400гц) своими руками

Однофазный мотор можно подключить только к однофазной линии. Трехфазный двигатель подходит как для однофазной, так и для трехфазной линии. Причем для однофазного подключения в сеть 127 или 220 Вольт выгодна схема «треугольник», а для линий 220 и 380 Вольт с тремя фазами – «звезда». В зависимости от технических характеристик мотора подключение может выполняться путем комбинаций этих методов.

Adblock
detector